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Abstract: They study the topic of dimensionality reduction for k-means clustering. Dimensionality reduction 

covers the combination of two approaches first feature selection and second feature extraction. A feature 

selection-based algorithm for k-means clustering chooses a small subset of the input features and then applies 

k-means clustering on the selected features. A feature extraction-based algorithm for k-means clustering 

generates a small set of new artificial features and then applies k-means clustering on the constructed features. 

Even though the importance of k-means clustering as well as the wealth of heuristic methods addressing it, 

provably accurate feature selection methods for k-means clustering are not known. On the other hand, two 

provably accurate feature extraction methods for k-means clustering are identified in the literature that is one is 

based on random projections and the other is based on the singular value decomposition (SVD). This paper 

makes further advancement in the direction of a better understanding of dimensionality reduction for k-means 

clustering. Namely, they present the first provably accurate feature selection method for k-means clustering and, 

in addition, they present two feature extraction methods. The first feature extraction method is based on random 

projections and it improves upon the previous results in terms of time complexity and number of features needed 

to be extracted. The second feature extraction method is depends upon fast approximate SVD factorizations and 

it also improves upon the existing results in terms of time complexity. The proposed algorithms are randomized 

and present constant-factor approximation guarantees with respect to the optimal k-means objective value. 

Keywords: clustering, dimensionality reduction, randomized algorithms.  

  

I. Introduction 
Clustering is ubiquitous in science and engineering with numerous application domains ranging from 

bioinformatics and medicine to the social sciences and the web Perhaps the most well-known clustering 

algorithm is called as “k-means” algorithm or the Lloyd’s method. Lloyd’s method is an iterative expectation-

maximization type approach that attempts to deal with the following objective. given a set of Euclidean points 

and a positive integer k corresponding to the number of clusters, split the points into k clusters so that the total 

sum of the squared Euclidean distances of each point to its nearest cluster centre is minimized Due to this 

intuitive objective as well as its effectiveness, the Lloyd’s method for k-means clustering has become 

enormously popular in applications. As of late, the high dimensionality of present day huge datasets has given a 

significant test to the outline of effective algorithmic answers for k-means bunching. To begin with, ultra-high 

dimensional information power existing calculations for k-means grouping to be computationally wasteful, and 

second, the presence of numerous immaterial components may not permit the ID of the significant fundamental 

structure in the information . Specialists have tended to these snags by presenting component choice and 

highlight extraction procedures. Highlight determination chooses a (little) subset of the real components of the 

information, though include extraction develops a (little) set of counterfeit components taking into account the 

first elements. 

 

II. Related Work 
In this paper [1], author outlined, Research on k-means Clustering Algorithm: An Improved k-means 

Clustering Algorithm Bunching investigation strategy is one of the primary expository routines in information 

mining, the system for grouping calculation will impact the bunching results specifically. This paper talks about 

the standard k-means bunching calculation and examines the deficiencies of standard k-implies calculation, for 

example, the k-means grouping calculation needs to compute the separation between every information article 

and every single group focus in every cycle, which makes the productivity of bunching is not high. This paper 

proposes an enhanced k-implies calculation keeping in mind the end goal to explain this inquiry, requiring a 

straightforward information structure to store some data in each cycle, which is to be utilized as a part of the 

following integration. The enhanced technique abstains from figuring the separation of every information article 

to the group focuses repeal, sparing the running time. Test results demonstrate that the enhanced strategy can 
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adequately enhance the rate of grouping and exactness, diminishing the computational unpredictability of the k-

implies. 

In this paper[2], Top 10 algorithms in data mining they  presents the top 10 data mining algorithms 

identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, 

SVM, Apriority, EM, Page Rank, Gadabouts, kNN, Naive Bayes, and CART. These top 10 algorithms are 

among the most influential data mining algorithms in the research community. With each algorithm, they 

provide a description of the algorithm, discuss the impact of the algorithm, and review current and further 

research on the algorithm. These 10 algorithms cover classification. 

In this paper [3],  They demonstrate the presence of little corsets for the issues of figuring k-middle and 

k-means bunching for focuses in low measurement. At the end of the day, they appear  that given a point set P in 

IRd, one can figure a weighted set S P, of size O(k"−d log n), such that one can figure the k-middle/means 

bunching on S of on P, and get a (1 + ")- estimation. Subsequently, they enhance the speediest known 

calculations for (1 + ") - estimated kmeans furthermore, k-middle. Our calculations have straight running time 

for a settled k and ". In expansion, it is possible to keep up the (1 + ")- surmised k-middle or k-means grouping 

of a stream when focuses are by and large just embedded, utilizing polylogarithmic space and redesign. 

In this paper[4], They show that there exists a (k, ")-coreset for k-median and k-means clustering of n 

points in IRd, which is of size independent of n. In particular, they construct (k, ")- coreset of size. 

In this paper[5], author studied , they portray a straightforward irregular inspecting based method for 

creating inadequate grid approximations. Our technique and examination are to a great degree basic: the 

investigation uses nothing more than the Chernoff-Hoeffding limits. In spite of the straightforwardness, the 

guess is equivalent also, some of the time superior to anything past work. Our calculation registers the scanty 

framework estimation in a solitary ignore the information. Further, the greater part of the sections in the yield 

framework are quantized, and can be concisely spoken to by a bit vector, in this manner prompting much 

reserve funds in space. 

In this paper[6], the Johnson-Lindenstrauss irregular projection lemma gives a basic approach to lessen 

the dimensionality of an arrangement of focuses while around protecting their pair wise separations. The most 

direct utilization of the lemma applies to a limited arrangement of focuses, however late work has developed the 

procedure to relative subspaces, bends, and general smooth manifolds. Here the instance of irregular projection 

of smooth manifolds is considered, furthermore, a past investigation is honed, lessening the reliance on such 

properties as the complex's greatest ebb and flow. 

In this paper [7], Inspired by applications in which the information may be planned as a network, they 

consider calculations for a few normal straight variable based math issues. These calculations make more 

efficient utilization of computational assets, for example, the calculation time, arbitrary access memory (RAM), 

what's more, the quantity of disregards the information, than do already known calculations for these issues. In 

this paper, author devise two calculations for the framework duplication issue. Assume An and B (which are m 

× n and n × p, separately) are the two info networks. In our fundamental calculation, they perform c free trials, 

where in every trial they arbitrarily test a component of {1, 2,...,n} with a suitable likelihood circulation P on {1, 

2,...,n}. They shape a m × c lattice C comprising of the examined sections of An, each scaled fittingly, and we 

shape a c × n lattice R utilizing the relating columns of B, again scaled properly. The decision of P and the 

section and column scaling are pivotal elements of the calculation. At the point when these are picked 

reasonably, they demonstrate that CR is a decent estimate to AB. All the more absolutely, they demonstrate. 

In this paper [8], author proposed that this, they distinguish two issues included in adding to a 

mechanized component subset determination calculation for unlabeled information: the requirement for 

discovering the quantity of groups in conjunction with highlight choice, and the requirement for normalizing the 

inclination of highlight determination criteria with deference to measurement. They investigate the component 

choice issue and these issues through FSSEM (Feature Subset Selection utilizing Expectation-Maximization 

(EM) bunching) and through two distinctive execution criteria for assessing hopeful element subsets: scramble 

detachability and most extreme probability. They present verifications on the dimensionality predispositions of 

these element criteria, and present a cross-projection standardization conspire that can be connected to any 

foundation to enhance these predispositions. Our examinations demonstrate the requirement for highlight 

choice, the requirement for tending to these two issues, what's more, the adequacy of our proposed arrangements 
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III. System Architecture 

 
 

IV. Conclusion 
They considered the issue of dimensionality decrease for k-means bunching. The greater part of the 

current results in this theme comprise of heuristic methodologies, whose magnificent observational execution 

cannot be clarified with a thorough hypothetical investigation. In this paper, our emphasis was on 

dimensionality lessening systems that function admirably in principle. They displayed three such 

methodologies, one component choice technique for k-implies what's more, two element extraction techniques. 

The hypothetical investigation of the proposed systems depends on the way that dimensionality diminishment 

for k-means has profound associations with low-rank approximations to the information framework that 

contains the focuses one needs to group. Author clarified those associations in the message and utilized cutting 

edge quick calculations to process such low rank approximations and outlined quick calculations for 

dimensionality diminishment in k-implies. 
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